Numerical Simulation Investigation of Vortex Finder Depth Effects on Flow Field and Performance of Desanding Mini-Hydrocyclones

Author:

He Fengqin,Zhao Decao,Wang Jiangang,Huang YuanORCID,Liu Qibin

Abstract

Sand has significant side effects on oil production and offshore platform processing system. Mini-hydrocyclones is a very important component to desanding operation system. However, even a slight modification on the structural parameter of hydrocylone might result in a significant influence on its flow field and separation efficiency. So, analysis on flow field characteristics and separation efficiency of the mini-hydrocyclones can help to optimize its structural parameters. In this work, five mini-hydrocycloness were designed, and flow patterns and particle separation ability of a mini-hydrocyclones with various vortex finder depths were investigated through Computational Fluid Dynamics (CFD) simulation method. The research shows that vortex finder depth has a significant influence on the separation function partition of mini-hydrocyclones. The deeper the vortex finder depth is, the larger the volume of pre-separation area, the smaller the volume of the main separation area and the bigger the energy consumption are. These characteristics are disadvantage to improve separation performance of hydrocyclone. Ratio (L0/D) of vortex finder depth (L0) to the hydrocyclone cylinder diameter (D) is about 1.0.

Funder

National Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3