Accelerating Predictions of Morphological Bed Evolution by Combining Numerical Modelling and Artificial Neural Networks

Author:

Papadimitriou Andreas,Chondros MichalisORCID,Metallinos Anastasios,Tsoukala Vasiliki

Abstract

Process-based models have been employed extensively in the last decades for the prediction of coastal bed evolution in the medium term (1–5 years), under the combined action of waves and currents, due to their ability to resolve the dominant coastal processes. Despite their widespread application, they are associated with high demand for computational resources, rendering the annual prediction of the coastal bed evolution a tedious task. To combat this, wave input reduction methods are generally employed to reduce the sheer amount of sea-states to be simulated to assess the bed level changes. The purpose of this research is to further expand on the concept of input reduction methods by presenting a methodology combining numerical modelling and an Artificial Neural Network (ANN). The trained ANN is tasked with eliminating wave records unable to initiate sediment motion and hence further reduce the required computational times. The methodology was implemented in both an idealized and a real-field case study to examine the sensitivity, and produced very satisfactory predictions of the rates of bed level change, with respect to a benchmark simulation containing a very detailed wave climate. The obtained results have strong implications for further accelerating the demanding morphological simulations while enhancing the reliability and accuracy of model predictions.

Funder

European Regional Development Fund of the European Union

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference50 articles.

1. Roelvink, D., and Reniers, A. A Guide to Modeling Coastal Morphology, 2012.

2. Medium-term 2DH coastal area modelling;de Vriend;Coast. Eng.,1993

3. Coastal Morphodynamic Evolution Techniques;Roelvink;Coast. Eng.,2006

4. Lesser, G.R. An Approach to Medium-Term Coastal Morphological Modelling. Ph.D. Thesis, 2009.

5. Beach Evolution Caused by Littoral Drift Barrier;Borah;J. Waterw. Port Coast. Ocean Eng.,1985

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3