Numerical Study of Effects of Winds and Tides on Monthly-Mean Circulation and Hydrography over the Southwestern Scotian Shelf

Author:

Pei Qiantong,Sheng Jinyu,Ohashi KyokoORCID

Abstract

A nested-grid modelling system is used to quantify effects of winds and tides on the three-dimensional (3D) circulation and hydrography over the southwestern Scotian Shelf (swScS) and surrounding areas in 2018. The performance of the nested-grid modelling system is assessed by comparing model results with observations and reanalysis data. Analysis of model results demonstrates that both winds and tides enhance the vertical mixing and modify the 3D circulation over the swScS. In winter (summer), the wind-induced vertical mixing warms (significantly cools) the sea surface temperature (SST) over the Scotian Shelf (ScS). In addition to intense vertical mixing associated with winter convection, the wind-induced mixing raises the sea surface salinity (SSS) by entraining the relatively salty sub-surface waters with the surface waters. The effect of wind-induced vertical mixing is evident in the upper water columns of ~40 m (~15 m) in February (August) 2018 over the swScS, reflecting the typically stronger wind forcing in winter than in summer. The wind forcing also enhances the seaward spreading of river runoff. Strong tidal mixing and advection also play an important role in affecting the hydrography and density-driven currents over the Bay of Fundy (BoF), Georges Bank (GeB), and swScS. In summer, tides significantly reduce the SST, increase the SSS, and affect large density-driven currents over the BoF, GeB, and swScS. Winds and tides also modify the large-scale ocean circulation, eddies, meanders, and frontal structures in the deep waters off the swScS through the modulation of baroclinic hydrodynamics.

Funder

Natural Sciences and Engineering Research Council of Canada, the Ocean Frontier Institute, and the Marine Environmental Observation, Prediction, and Response Network

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3