Abstract
Traditional concrete revetments can destroy the ecological environment and the water landscape. An increasing number of ecological revetment structures have been applied in coastal, lake, and river regulation projects. It has been found that honeycomb-type revetments display a better performance in the attenuation of wave overtopping when compared to experimental data collected using the Eurotop and Muttray’s formula; recording a 40% decrease in the wave run-up in comparison to the latter. To further investigate the wave run-up and overtopping of the ecologically vegetated honeycomb-type revetment, based on OpenFOAM, an open source computational fluid dynamics software, a three-dimensional numerical wave tank was established. The Discrete Particle Method (DPM) was used to simulate gravel movement, and the flexible plant move boundary model was developed to simulate vegetation. The results of wave run-up calculated by the numerical model and those obtained by the experiments were in good agreement, with errors less than 20%. The modeled results of wave overtopping were within the same order of magnitude as those from the experiments; however, critical limitations were noticed due to effects of plant generalization and grid restrictions imposed by DPM methods. The results showed that wave overtopping increased with increasing wave period and wave height. However, with an increase in the wave overtopping, the influence of the wave period on wave overtopping decreased. The increase in vegetation density effectively reduced wave overtopping. Furthermore, an empirical formula for wave overtopping, considering the effects of vegetation density, was proposed.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Open Funds of State Key Laboratory of Hydraulic Engineering Simulation and Safety of China
Natural Science Foundation of Tianjin
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献