Abstract
Large-deformation finite element (LDFE) analysis with the coupled Eulerian–Lagrangian (CEL) technique for large-deformation soil functions without twisting or distorting the mesh. However, the model does not consider the strain-softening and strain-rate dependence of clay-based soils. The undrained shear strength of clay is sensitive to the strain rate. In addition, the strain-softening effect of soil strength reduction accompanied by large-scale shear deformation should be considered. In this study, anchor dragging simulations were performed for large-deformation analysis considering strain-softening and strain-rate dependence. Furthermore, a shear strength equation expressing the strain-softening and strain-rate dependence of the Tresca constitutive model was developed based on VUMAT, an ABAQUS/Explicit subroutine. The equation was designed so that it could be linked to the LDFE/CEL model. The model was verified by performing comparative analysis with the Mohr–Coulomb (M–C) perfect-plasticity model. The newly constructed Tresca base strain-softening and strain-rate-dependence VUMAT algorithm in the LDFE/CEL model analysis confirmed the effects of strain-softening and strain-rate dependence. The proposed model enabled a highly realistic simulation of the actual phenomenon than the M–C model. Finally, a parametric study on strain-softening and strain-rate dependence was conducted, and the behavior of clay due to the anchor drag phenomenon was revealed.
Funder
National Research Foundation of Korea
Ministry of Oceans and Fisheries
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献