Effects of Dietary Vegetable Oils Replacing Fish Oil on Fatty Acid Composition, Lipid Metabolism and Inflammatory Response in Adipose Tissue of Large Yellow Croaker (Larimichthys crocea)

Author:

Xu Dan,Xiang Xiaojun,Li Xueshan,Xu Ning,Zhang Wencong,Mai Kangsen,Ai Qinghui

Abstract

The present study was conducted to investigate the effects of dietary vegetable oils (VOs) replacing fish oil (FO) on fatty acid composition, lipid metabolism and inflammatory response in adipose tissue (AT) of large yellow croaker (Larimichthys crocea). The initial body weight of a large yellow croaker was 10.07 ± 0.13 g. Three iso-nitrogenous and iso-lipidic diets were formulated by replacing FO with 0% (the control group), 100% soybean oil (SO) and 100% linseed oil (LO). Results showed that the contents of C18:2n-6 and C18:3n-3 were significantly increased in AT of fish fed the SO and LO diets compared with the FO diet, respectively. The proportion of n-6 polyunsaturated fatty acid (PUFA) was increased in SO and LO diets, while the proportions of saturated fatty acid and n-3 LC-PUFA were decreased. Moreover, dietary SO and LO significantly induced excess fat accumulation of AT by increasing the triglyceride content and the hypertrophy of adipocytes. Dietary SO and LO significantly increased lipogenesis-related gene expressions (dagt2, fabp10, srebp1, cebpα and pparγ), while decreasing the gene expression of lpl. Meanwhile, dietary SO increased the expression of genes related to fatty acid β-oxidation (cpt1 and aco), while LO showed no differences. Furthermore, dietary SO and LO increased the pro-inflammatory gene expressions and decreased the anti-inflammatory gene il10 expression. The phosphorylation levels of p38 MAPK and NF-κB were significantly upregulated by dietary SO and LO. In addition, there was a significant increase in macrophage infiltration and M1 polarization in AT of fish fed SO and LO diets. In conclusion, the present study revealed that dietary SO and LO replacing FO affected fatty acid composition and induced lipid dysmetabolism and inflammatory response in the adipose tissue of large yellow croaker.

Funder

National Natural Science Foundation of China

National Science Fund for Distinguished Young Scholars of China

Ten-thousand Talents Program

Scientific and Technological Innovation of Blue Granary

CARS-47

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3