The Influence of Mechanical Alloying and Plastic Consolidation on the Resistance to Arc Erosion of the Ag–Re Composite Contact Material

Author:

Kołacz DariuszORCID,Księżarek Stanisław,Borkowski PiotrORCID,Karwan-Baczewska Joanna,Lis Marcin,Kamińska Małgorzata,Juszczyk Barbara,Kulasa Joanna,Kowalski AleksanderORCID,Wierzbicki Łukasz,Marszowski Krzysztof,Jabłoński MariuszORCID

Abstract

The article presents the influence of mechanical alloying and plastic consolidation on the resistance to arc erosion of the composite Ag–Re material against the selected contact materials. The following composites were selected for the tests: Ag90Re10, Ag95Re5, Ag99Re1 (bulk chemical composition). Ag–Re materials were made using two methods. In the first, the materials were obtained by mixing powders, pressing, sintering, extrusion, drawing, and die forging, whereas, in the second, the process of mechanical alloying was additionally used. The widely available Ag(SnO2)10 and AgNi10 contact materials were used as reference materials. The reference AgNi10 material was made by powder metallurgy in the process of mixing, pressing, sintering, extrusion, drawing, and die forging, while the Ag(SnO2)10 composite was obtained by spraying AgSniBi alloy with water, and then the powder was pressed, oxidized internally, sintered, extruded into wire, and drawn and die forged. The tests of electric arc resistance were carried out for loads with direct current (DC) and alternating current (AC). For alternating current (I = 60 A, U = 230 V), 15,000 switching cycles were made, while, for constant current 50,000 (I = 10 A, U = 550 V). A positive effect of the mechanical alloying process and the addition of a small amount of rhenium (1% by mass) on the spark erosion properties of the Ag–Re contact material was found. When DC current of 10 A was used, AgRe1 composite was found to be more resistant than commonly used contact materials (AgNi10 and Ag(SnO2)10).

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3