Materials for High Temperature Liquid Lead Storage for Concentrated Solar Power (CSP) Air Tower Systems

Author:

Rinaldi AntonioORCID,Barbieri GiuseppeORCID,Kosykh Eduard,Szakalos Peter,Testani ClaudioORCID

Abstract

Today the technical limit for solar towers is represented by the temperature that can be reached with current accumulation and exchange fluids (molten salts are generally adopted and the max temperatures are generally below 600 °C), even if other solutions have been suggested that reach 800 °C. An innovative solution based on liquid lead has been proposed in an ongoing experimental project named Nextower. The Nextower project aims to improve current technologies of the solar sector by transferring experience, originally consolidated in the field of nuclear plants, to accumulate heat at higher temperatures (T = 850–900 °C) through the use of liquid lead heat exchangers. The adoption of molten lead as a heat exchange fluid poses important criticalities of both corrosion and creep resistance, due to the temperatures and structural stresses reached during service. Liquid lead corrosion issues and solutions in addition to creep-resistant material selection are discussed. The experimental activities focused on technical solutions adopted to overcome these problems in terms of the selected materials and technologies. Corrosion laboratory tests have been designed in order to verify if structural 800H steel coated with 6 mm of FeCrAl alloy layers are able to resist the liquid lead attack up to 900 °C and for 1000 h or more. The metallographic results were obtained by mean of scanning electron microscopy with an energy dispersive microprobe confirm that the 800H steel shows no sign of corrosion after the completion of the tests.

Funder

European Commission

Publisher

MDPI AG

Subject

General Materials Science

Reference39 articles.

1. Summary Report for Concentrating Solar Power Thermal Storage Workshop: New Concepts and Materials for Thermal Energy Storage and Heat-Transfer Fluids;Glatzmaier,2011

2. Techno-economic optimization of molten salt solar tower plants;Puppe,2018

3. Stop Smoking—Tube-In-Tube Helical System for Flameless Calcination of Minerals

4. Lead-Cooled Fast Reactor Systems and the Fuels and Materials Challenges

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3