Spin Polarization of Mn Could Enhance Grain Boundary Sliding in Mg

Author:

Wang Vei,Du Jun-PingORCID,Somekawa Hidetoshi,Ogata Shigenobu,Geng Wen TongORCID

Abstract

Segregation of rare earth alloying elements are known to segregate to grain boundaries in Mg and suppress grain boundary sliding via strong chemical bonds. Segregation of Mn, however, has recently been found to enhance grain boundary sliding in Mg, thereby boosting its ductility. Taking the Mg (2¯114) twin boundary as an example, we performed a first-principles comparative study on the segregation and chemical bonding of Y, Zn, and Mn at this boundary. We found that both Y-4d and Mn-3d states hybridized with the Mg-3sp states, while Zn–Mg bonding was characterized by charge transfer only. Strong spin-polarization of Mn pushed the up-spin 3d states down, leading to less anisotropic Mn–Mg bonds with more delocalized charge distribution at the twin boundary, and thus promotes grain boundary plasticity, e.g., grain boundary sliding.

Funder

National Natural Science Foundation of China

The Grant-in-Aid for Scientific Research

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3