Peridynamic Simulation of Dynamic Fracture Process of Engineered Cementitious Composites (ECC) with Different Curing Ages

Author:

Hou Weiye,Hu Yuyang,Yuan Chengfang,Feng HuORCID,Cheng Zhanqi

Abstract

The mechanical properties of engineered cementitious composites (ECC) are time-dependent due to the cement hydration process. The mechanical behavior of ECC is not only related to the matrix material properties, but also to the fiber/matrix interface properties. In this study, the modeling of fiber and fiber/matrix interactions is accomplished by using a semi-discrete model in the framework of peridynamics (PD), and the time-varying laws of cement matrix and fiber/matrix interface bonding properties with curing age are also considered. The strain-softening behavior of the cement matrix is represented by introducing a correction factor to modify the pairwise force function in PD theory. The fracture damage of ECC plate from 3 to 28 days was numerically simulated by using the improved PD model to visualize the process of damage fracture under dynamic loading. The shorter the hydration time, the lower the corresponding elastic modulus, and the smaller the number of cracks generated. The dynamic fracture process of early-age ECC is analyzed to understand the crack development pattern, which provides reference for guiding structural design and engineering practice.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Reference38 articles.

1. From micromechanics to structural engineering—The design of cementitious composites for civil engineering applications;Li;Doboku Gakkai Ronbunshu,1993

2. On Engineered Cementitious Composites (ECC)

3. FLEXURAL FATIGUE FAILURE CHARACTERISTICS OF AN ENGINEERED CEMENTITIOUS COMPOSITE AND POLYMER CEMENT MORTARS

4. Permeability study of cracked concrete

5. Corrosion resistance performance of steel-reinforced engineered cementitious composite beams;Sahmaran;ACI Mater. J.,2008

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3