Multi-Layer Simulation of the Powder Bed Selective Laser Processing of Alumina for Residual Stress and Distortion Evaluation

Author:

Abdelmoula MohamedORCID,Küçüktürk GökhanORCID

Abstract

A numerical model was developed to simulate the real process of alumina powder bed selective laser processing (PBSLP) to thoroughly investigate the residual stress and distortion experienced in printed parts when multi-layer scanning with a CO2 laser source is considered. The model contains a user-defined function (UDF) for the laser source, temperature-dependent material properties, scanning strategies, and build orientations, and it is solved using ANSYS 2020R2. In addition, the model’s validation was confirmed with experimental results. The results revealed that a high scanning speed (up to 1200 mm/s) and low laser power are effective for the PBSLP of alumina, owing to alumina’s high absorptivity for CO2 lasers, and a high manufacturing rate can be achieved. During the multi-layer printing simulation, the accumulated heat inside the part increased gradually with an increased number of printed layers. Additionally, the calculated residual stress exceeded the yield limit for all the studied build orientations due to the printed part’s high-temperature difference. When preheating was applied, the residual stress decreased by 23% and the distortion decreased by 54%. For the successful PBSLP of ceramics, commercial printers cannot be used effectively. A particular printer equipped with a temperature controller and a preheating system is required for ceramics.

Funder

European Commission

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3