Abstract
Distributed optical fiber sensing is a unique technology that offers unprecedented advantages and performance, especially in those experimental fields where requirements such as high spatial resolution, the large spatial extension of the monitored area, and the harshness of the environment limit the applicability of standard sensors. In this paper, we focus on one of the scattering mechanisms, which take place in fibers, upon which distributed sensing may rely, i.e., the Rayleigh scattering. One of the main advantages of Rayleigh scattering is its higher efficiency, which leads to higher SNR in the measurement; this enables measurements on long ranges, higher spatial resolution, and, most importantly, relatively high measurement rates. The first part of the paper describes a comprehensive theoretical model of Rayleigh scattering, accounting for both multimode propagation and double scattering. The second part reviews the main application of this class of sensors.
Funder
Ministry of Education, Universities and Research
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献