Wideband Interference Cancellation System Based on a Fast and Robust LMS Algorithm

Author:

Lu Qiaran1,Qin Huanding1,He Fangmin1,Zhang Yunshuo1,Wang Qing1,Meng Jin1

Affiliation:

1. National Key Laboratory of Electromagnetic Energy, Naval University of Engineering, Wuhan 430033, China

Abstract

The interference cancellation ratio (ICR) is a key performance indicator of digital-to-analog hybrid radio frequency (RF) interference cancellation systems. Aiming at the low convergence speed of a digital-to-analog hybrid RF interference cancellation system based on a multi-tap structure (MDARFICS), a novel, fast, and robust variable-step-size least-mean-square (LMS) algorithm based on an improved hyperbolic tangent function (IHVSS-LMS) is proposed. The IHVSS-LMS algorithm adopts an improved hyperbolic tangent function and uses adjustable parameters and the iteration number to jointly adjust the step size, which improves the convergence speed and reduces the computational complexity. Moreover, by using the prior information of the input signal, the non-linear relationship between the step size and the input signal power is established, which enhances the robustness and the ability to suppress interference with mutable power. The IHVSS-LMS algorithm is applied to the MDARFICS. Through theoretical derivation, the convergence speed and the steady-state expressions of the interference cancellation ratio of the MDARFICS are obtained. The simulation results show that under the conditions of high and low signal-to-noise ratio (SNR), the robustness, convergence speed, and steady-state error performance of the IHVSS-LMS algorithm are better than the existing variable-step-size algorithm. The experimental results show that using the IHVSS-LMS algorithm, the MDARFICS can not only effectively accelerate the convergence speed by at least three times but can also improve the ICR by more than 3 dB.

Funder

National Key R&D Program of China

China National Funds for Distinguished Young Scientists

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3