Natural-Language-Driven Multimodal Representation Learning for Audio-Visual Scene-Aware Dialog System

Author:

Heo Yoonseok1ORCID,Kang Sangwoo2ORCID,Seo Jungyun1ORCID

Affiliation:

1. Department of Computer Science and Engineering, Sogang University, Seoul 04107, Republic of Korea

2. School of Computing, Gachon University, Seongnam 13120, Republic of Korea

Abstract

With the development of multimedia systems in wireless environments, the rising need for artificial intelligence is to design a system that can properly communicate with humans with a comprehensive understanding of various types of information in a human-like manner. Therefore, this paper addresses an audio-visual scene-aware dialog system that can communicate with users about audio-visual scenes. It is essential to understand not only visual and textual information but also audio information in a comprehensive way. Despite the substantial progress in multimodal representation learning with language and visual modalities, there are still two caveats: ineffective use of auditory information and the lack of interpretability of the deep learning systems’ reasoning. To address these issues, we propose a novel audio-visual scene-aware dialog system that utilizes a set of explicit information from each modality as a form of natural language, which can be fused into a language model in a natural way. It leverages a transformer-based decoder to generate a coherent and correct response based on multimodal knowledge in a multitask learning setting. In addition, we also address the way of interpreting the model with a response-driven temporal moment localization method to verify how the system generates the response. The system itself provides the user with the evidence referred to in the system response process as a form of the timestamp of the scene. We show the superiority of the proposed model in all quantitative and qualitative measurements compared to the baseline. In particular, the proposed model achieved robust performance even in environments using all three modalities, including audio. We also conducted extensive experiments to investigate the proposed model. In addition, we obtained state-of-the-art performance in the system response reasoning task.

Funder

National Research Foundation of Korea (NRF) grant funded by the Korea Government

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3