Development and Testing of a Daily Activity Recognition System for Post-Stroke Rehabilitation

Author:

Proffitt Rachel1ORCID,Ma Mengxuan2,Skubic Marjorie3

Affiliation:

1. Department of Occupational Therapy, University of Missouri, Columbia, MO 65211, USA

2. MathWorks, Inc., Natick, MA 01760, USA

3. Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA

Abstract

Those who survive the initial incidence of a stroke experience impacts on daily function. As a part of the rehabilitation process, it is essential for clinicians to monitor patients’ health status and recovery progress accurately and consistently; however, little is known about how patients function in their own homes. Therefore, the goal of this study was to develop, train, and test an algorithm within an ambient, in-home depth sensor system that can classify and quantify home activities of individuals post-stroke. We developed the Daily Activity Recognition and Assessment System (DARAS). A daily action logger was implemented with a Foresite Healthcare depth sensor. Daily activity data were collected from seventeen post-stroke participants’ homes over three months. Given the extensive amount of data, only a portion of the participants’ data was used for this specific analysis. An ensemble network for activity recognition and temporal localization was developed to detect and segment the clinically relevant actions from the recorded data. The ensemble network, which learns rich spatial-temporal features from both depth and skeletal joint data, fuses the prediction outputs from a customized 3D convolutional–de-convolutional network, customized region convolutional 3D network, and a proposed region hierarchical co-occurrence network. The per-frame precision and per-action precision were 0.819 and 0.838, respectively, on the test set. The outcomes from the DARAS can help clinicians to provide more personalized rehabilitation plans that benefit patients.

Funder

Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health

Sensors MDPI

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3