Spatiotemporal Absorption Features of Yellow Willow Water Usage on the Southern Edge of the Semi-Arid Hunshandak Sandland in China

Author:

Ji Mingyu1,Jia Debin1,Miao Qingfeng1ORCID,Hao Yusheng1,Chen Shuling1,Liu Ting1,Yang Lina2,Li Xiaoyan3,Feng Weiying4ORCID

Affiliation:

1. Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China

2. Centre for Management of Baotou Reservoir, Baotou 014017, China

3. Hohhot Sub-Center for Hydrology and Water Resources, Hohhot 010010, China

4. School of Materials Science and Engineering, Beihang University, Beijing 100191, China

Abstract

The improvement of water usage efficiency and productivity, as well as the development of effective water management plans, necessitates a comprehensive understanding of how water utilization patterns in different soil layers within arid and semi-arid climates impact the capacity of plant roots to absorb water. However, there is currently no knowledge regarding the water use strategies employed by artificial yellow willow. So, we conducted a study on the hydrogen and oxygen isotopic composition of rainfall in yellow willow (Salix gordejevii) from the semi-arid region located at the southern edge of the Hunshandak Sandland in China. This study utilized measured data on xylem water, groundwater, soil moisture, and rainfall. By employing a combination of the direct comparison method and the MixSIAR model, we investigated the water uptake strategies employed by yellow willow throughout its growing season. The findings revealed that the mean δ D was highest in precipitation and lowest in groundwater, whereas the mean δ18O was highest in stem water and lowest in groundwater. The δ D and δ18O fluctuated significantly in precipitation but were steady in groundwater. Because precipitation was significantly less than evaporation, the slope and intercept were lower for the local than global atmospheric precipitation line. Water availability steadily declined with increasing depth. Lower δ18O values were caused by precipitation diluting the soil water. The MixSIAR results indicated that the primary source in May, September, and October was utilized at 19%, 18%, and 18%, respectively. In contrast, the utilization rate of each source varied considerably in June, July, and August (the primary source was utilized at 19%, 18%, and 18%, respectively). Comparatively high rates of water absorption and utilization were observed in June (19% of the total water source), July (18%), and August (23%). Therefore, the vertical distribution of the root system and variations in the soil water content regulate water usage for the yellow willow. To prevent excessive water usage and promote ecosystem restoration with artificial yellow willow plantations in water-limited desert settings, policy makers should consider the patterns of plant water use and soil water availability. By selecting drought-adapted plant species and optimizing irrigation management, it is possible to reduce water wastage and ensure that water is used efficiently for revegetation and ecosystem restoration, avoiding overuse of water and maintaining the sustainability of revegetation in water-stressed desert areas.

Funder

National Natural Fund Project of Inner Mongolia Agricultural University

Science and Technology Major Project of Ordos City

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3