Affiliation:
1. Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China
2. Centre for Management of Baotou Reservoir, Baotou 014017, China
3. Hohhot Sub-Center for Hydrology and Water Resources, Hohhot 010010, China
4. School of Materials Science and Engineering, Beihang University, Beijing 100191, China
Abstract
The improvement of water usage efficiency and productivity, as well as the development of effective water management plans, necessitates a comprehensive understanding of how water utilization patterns in different soil layers within arid and semi-arid climates impact the capacity of plant roots to absorb water. However, there is currently no knowledge regarding the water use strategies employed by artificial yellow willow. So, we conducted a study on the hydrogen and oxygen isotopic composition of rainfall in yellow willow (Salix gordejevii) from the semi-arid region located at the southern edge of the Hunshandak Sandland in China. This study utilized measured data on xylem water, groundwater, soil moisture, and rainfall. By employing a combination of the direct comparison method and the MixSIAR model, we investigated the water uptake strategies employed by yellow willow throughout its growing season. The findings revealed that the mean δ D was highest in precipitation and lowest in groundwater, whereas the mean δ18O was highest in stem water and lowest in groundwater. The δ D and δ18O fluctuated significantly in precipitation but were steady in groundwater. Because precipitation was significantly less than evaporation, the slope and intercept were lower for the local than global atmospheric precipitation line. Water availability steadily declined with increasing depth. Lower δ18O values were caused by precipitation diluting the soil water. The MixSIAR results indicated that the primary source in May, September, and October was utilized at 19%, 18%, and 18%, respectively. In contrast, the utilization rate of each source varied considerably in June, July, and August (the primary source was utilized at 19%, 18%, and 18%, respectively). Comparatively high rates of water absorption and utilization were observed in June (19% of the total water source), July (18%), and August (23%). Therefore, the vertical distribution of the root system and variations in the soil water content regulate water usage for the yellow willow. To prevent excessive water usage and promote ecosystem restoration with artificial yellow willow plantations in water-limited desert settings, policy makers should consider the patterns of plant water use and soil water availability. By selecting drought-adapted plant species and optimizing irrigation management, it is possible to reduce water wastage and ensure that water is used efficiently for revegetation and ecosystem restoration, avoiding overuse of water and maintaining the sustainability of revegetation in water-stressed desert areas.
Funder
National Natural Fund Project of Inner Mongolia Agricultural University
Science and Technology Major Project of Ordos City