Extraction Method of Baseflow Recession Segments Based on Second-Order Derivative of Streamflow and Comparison with Four Conventional Methods

Author:

Yang WeifeiORCID,Xiao Changlai,Liang Xiujuan

Abstract

Baseflow recession analysis is widely used in hydrological research, water resource planning and management, and watershed hydrogeological research. The first step of baseflow recession analysis is to extract the baseflow recession segments from the hydrograph. Different extraction results lead to different analysis results. At present, the four major recession segment extraction methods applied by hydrologists are mostly based on experience, and there is no clear theoretical basis. Therefore, this study derives a second-order derivation (Sec-D) recession segment extraction method based on the power law relationship between storage and discharge. Moreover, by applying the Sec-D method and the four conventional extraction methods to four hydrological stations in the Tao’er River basin in northeastern China, the differences in the recession segment extraction, determination of basin-wide hydrogeological parameters, and groundwater balance estimation are compared. The results demonstrate that, contrary to the four conventional methods, the Sec-D method can effectively eliminate the early recession stage affected by the surface runoff or rainfall and some streamflow data with more than 1% non-sequential error. The hydraulic conductivity of the four basins estimated by the Sec-D method is between 2.3 × 10−5–4.9 × 10−5 m/s, and the aquifer thickness is between 131.2 and 202.5 m. However, the four conventional extraction methods may underestimate (by about 2.5 times) the basin-wide hydraulic conductivity and overestimate (by about 3 times) the aquifer thickness. The groundwater balance elements calculated by the Sec-D method and the four conventional methods present similar intra-annual fluctuation characteristics; the correlation coefficients of daily evapotranspiration calculated by the five methods ranged from 0.7 to 0.95, and those of daily effective groundwater recharge ranged from 0.95 to 0.99. The use of the Sec-D method in baseflow recession analyses is significant for future studies and can be combined with conventional methods.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3