Optimization and Simulation of Mountain City Land Use Based on MOP-PLUS Model: A Case Study of Caijia Cluster, Chongqing

Author:

Zhong Yuqing123,Zhang Xiaoxiang123ORCID,Yang Yanfei123,Xue Minghui123

Affiliation:

1. College of Geography and Remote Sensing, Hohai University, Nanjing 211100, China

2. Institute of Geographic Information Science and Engineering, Hohai University, Nanjing 211100, China

3. Center for Geospatial Intelligence and Watershed Science, Hohai University, Nanjing 211100, China

Abstract

Mountainous cities face various land use challenges, including complex topography, low land use efficiency, and the insufficient control of land use in small-scale areas at the urban fringe. Considering population changes, environmental conservation, and urban planning, this study first established three scenarios: economic priority (Econ. Prior.), ecological priority (Ecol. Prior.), and balanced development (BD), and then used the Multi-Objective Planning (MOP) model to calculate the optimal land use structure. Finally, it carried out land use spatial layout optimization based on the Patch-generating Land Use Simulation (PLUS) model in 2035, Caijia Cluster, Chongqing, China. This approach, known as MOP-PLUS modeling, aimed to optimize land use. Meanwhile, the applicability of the PLUS model in simulating land use changes was discussed in small-scale mountainous areas. The results show the following: (1) The “quantity + space” approach in the MOP-PLUS model demonstrated the feasibility of the PLUS model in simulating land use change in small-scale mountainous areas. The overall accuracy (OA) of land use change simulation reached 81.60%, with a Kappa value of 0.73 and a Figure of Merit (FoM) coefficient of 0.263. (2) Land use optimization: Under the Econ. Prior. scenario, economic benefits peaked at 4.06 × 1010 CNY. Urban expansion was the largest, leading to increased patch fragmentation. The Ecol. Prior. scenario yielded the highest ecological benefits, reaching 7.46 × 107 CNY. The urban development pattern exhibited inward contraction, accompanied by urban retrogression. In the BD scenario, economic benefits totaled 3.89 × 1010 CNY, and ecological benefits amounted to 7.16 × 107 CNY. Construction land tended to concentrate spatially, leading to relatively optimal land use efficiency. Therefore, based on a comprehensive consideration of the regional land use constraint policies and spatial layout, we believe that a balance point for land use demands can be found in the BD scenario. It can ensure economic growth without compromising the ecological environment.

Funder

UK Government’s Global Challenges Research Fund

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3