A Graphical User Interface for Calculating Exergy Destruction for Combustion Reactions

Author:

Korukҫu M. Özgün1ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Bursa Uludag, Gorukle, 16059 Bursa, Turkey

Abstract

The combustion of fuels has been studied by many researchers as it is used in a wide range of engineering applications. The chemical equilibrium approach served as the foundation for the investigation of combustion reactions. This article presents a software application designed to facilitate the calculation of combustion processes by calculating the combustion of 16 fuels among the common alkanes (CnH2n+2) and alcohols (CnH2n+1OH). The Ozan Combustion Calculator (OCC) offers a user-friendly and efficient graphical user interface (GUI) that allows users to easily input data and obtain results. The program was developed using MATLAB 2021a and LaTeX software, ensuring its reliability and accuracy. To perform these calculations, the program utilizes calculations of the thermophysical properties of fuels and water obtained from tables. The program consists of five modules, each serving a specific purpose. These modules calculate various parameters, such as the Adiabatic Flame Temperature, Exergy of Combustion with Dry Air, Exergy of Combustion with Moist Air, Energy of Combustion with Dry Air, and Energy of Combustion with Moist Air. Additionally, the program can be used to investigate the impact of relative humidity on the adiabatic flame temperature and exergy destruction. The results obtained from the calculations reveal that the adiabatic flame temperature exhibits a linear decrease as the relative humidity increases. On the other hand, exergy destruction demonstrates a quadratic increase with higher relative humidity values. The program derives mathematical relationships for the adiabatic flame temperature and exergy destruction with respect to relative humidity values, with a high regression coefficient (r2=0.999). The versatility of OCC makes it suitable for various applications. It can be utilized in university settings for both undergraduate- and graduate-level courses, providing students with a practical tool for studying combustion processes. Additionally, it finds applications in industrial settings for the design and optimization of combustors, gas turbines, and burners. The user-friendly interface and accurate calculations make OCC a valuable resource in the field of combustion engineering.

Publisher

MDPI AG

Reference35 articles.

1. Kuo, K.K. (2005). Principles of Combustion, John Wiley&Sons, Inc.

2. Poinsot, T., and Veynante, D. (2005). Theoretical and Numerical Combustion, RT Edwards, Inc.. [2nd ed.].

3. Van Wylen, G.J., Borgnakke, C., and Sonntag, R.E. (2009). Fundamentals of Thermodynamics, Wiley, John Wiley&Sons, Inc.

4. Williams, F.A. (1985). Combustion Theory, CRC Press.

5. On the adiabatic flame temperature in gas-turbine combustors;Ufot;Eur. J. Sci. Res.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3