Allelopathy of Wild Mushrooms—An Important Factor for Assessing Forest Ecosystems in Japan

Author:

Osivand Asma,Araya Hiroshi,Appiah Kwame,Mardani Hossein,Ishizaki Takayuki,Fujii Yoshiharu

Abstract

Research Highlights: Some organisms such as plants and fungi release certain secondary metabolites, generally called allelochemicals, which can influence the organisms around them. Some of the secondary metabolites released by mushrooms may have certain effects on the growth and development of neighboring plants. Background Objectives: The purpose of the present study was to investigate the allelopathic potential of mushrooms in a forest ecosystem. To this end, 289 Japanese mushroom species were collected from the wild and tested using a modified sandwich method, which is a quick and effective bioassay technique. Materials and Methods: The collected specimens were prepared for bioassay as dried samples, and 10 mg/well (10 cm2) was added to a 6-well multidish according to the mycelia biomass, which was estimated at 700−900 kg ha−1 year−1 (7–9 mg 10 cm−2) in coniferous forests. Results: Of the screened mushroom species, 74% inhibited more than 50% of the radicle elongation in lettuce (Lactuca sativa var. Great Lakes 366) seedlings, while the average of all species was 41.1%. This result suggests that wild mushrooms have a significant regulatory effect on lettuce growth. According to our standard deviation variance analysis, 54 out of 289 species showed significant allelopathic activity. Among these species, Xeromphalina tenuipes, Cortinarius violaceus, and Clavaria miyabeana exhibited the strongest growth inhibitory activity, with radicle elongation of 5.1%, 4.3%, and 7.6% of the control, respectively. In contrast, Ischnoderma resinosum stimulated the length of radicle and hypocotyl growth by 30.6% and 42.0%, respectively. These results suggest that these species may play important roles in ecosystems. In addition, the wide range of allelopathic activities observed in mushrooms indicates that various amounts of diverse secondary metabolites from these species are involved in mushroom allelopathy. Conclusions: Our study reveals the importance of evaluating mushroom allelopathy to understand the wider ecological structures within complex ecosystems.

Publisher

MDPI AG

Subject

Forestry

Reference81 articles.

1. Forest ecosystems and allelopathy;Reigosa,2006

2. The representation of allelopathy in ecosystem-level forest models

3. Allelopathy and exotic plant invasion;Kumar,2010

4. Allelopathy, Koch’s postulates, and the neck riddle;Williamson

5. Plant-Growth Regulator, Imidazole-4-Carboxamide, Produced by the Fairy Ring Forming Fungus Lepista sordida

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3