Differential Absorption Lidar (DIAL) Measurements of Landfill Methane Emissions

Author:

Innocenti FabrizioORCID,Robinson Rod,Gardiner Tom,Finlayson Andrew,Connor Andy

Abstract

Methane is one of the most important gaseous hydrocarbon species for both industrial and environmental reasons. Understanding and quantifying methane emissions to atmosphere is therefore an important element of climate change research. Range-resolved infrared differential absorption Lidar (DIAL) measurements provide the means to map and quantify a wide range of different methane sources. This paper describes the DIAL measurement technique and reports the application of an infrared DIAL system to field measurements of methane emissions from active and closed landfill sites. This paper shows how the capability of the DIAL to measure the spatial distribution of methane plumes enables DIAL vertical scans to spatially separate and independently quantify emissions from different sources. It also allows DIAL horizontal scans carried out above the surface to identify emission hot-spots. An overview of the landfill emission surveys carried out over the last decade by the National Physical Laboratory (NPL) DIAL system is presented. These surveys were part of research projects and commercial works aimed to validate the method and to provide reliable information on the methane emissions measuring the total site and area-specific emissions from active areas, capped areas, and gas engine stacks. This work showed that methane emissions are significantly higher for active sites than closed sites due to the methane emitted directly to air from the uncapped active areas. On active sites, the operational tipping areas generally have higher emission levels than the capped areas, although there is considerably variation in the emission from different capped areas. The information obtained with DIAL measurements allow site operators to identify significant fugitive emission sources and validate emissions estimates, and they allow the regulators to revise and update the emission inventories. Operators’ remediation actions driven by DIAL measurements have also been shown to considerably decreased total site methane emission.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference15 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3