Electromechanical Assessment and Induced Temperature Measurement of Carbon Fiber Tows under Tensile Condition

Author:

Mekid SamirORCID,Daraghma HammamORCID,Bashmal SalemORCID

Abstract

The paper presents an investigation and analysis of the electromechanical and thermal characteristics of the carbon fiber alone as single tow and embedded in host materials such as polymer e.g., acrylonitrile butadiene styrene (ABS) using 3D printing. While carbon fibers can partially reinforce the structure, they can act as sensors to monitor the structural health of the host material. The piezo-resistive behavior was examined without any pretreatment of the carbon fiber under tensile test in both cases. Special focus on the filaments clamping types and their effects was observed. An auxetic behavior was exhibited; otherwise, the free part shows elastic and yielding ranges with break point at high resistance. An induced temperature of the carbon fiber was measured during the tensile test to show low variation. The carbon fiber can provide strength contribution to the host material depending on the percentage of filling the material in 3D printing. The relative variation of the electrical resistance increases by 400% while embedded in the host material, but decreases as the tows filament density increases from 1 to 12 K.

Funder

King Fahd University of Petroleum and Minerals

King Abdulaziz City for Science and Technology

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3