Spatial–Temporal and Risk Assessment of Microplastics in the Surface Water of the Qinhuai River during Different Rainfall Seasons in Nanjing City, China

Author:

Wang Luming1,Huang Juan1ORCID,Wu Yufeng1,Chen Xuan1,Chen Ming2,Jin Hui2,Yao Jiawei1,Wang Xinyue1

Affiliation:

1. Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China

2. Nanjing Research Institute of Environmental Protection, Nanjing 210008, China

Abstract

Microplastics (MPs) are increasingly becoming recognized as worldwide environmental contaminants, exerting a substantial impact on the safety of city rivers. This study explored the temporal variance in MPs in different rainfall seasons, including spring, plum, and autumn rains. The Qinhuai River has large spatial fluctuations in MPs at six sampling sites, with an average concentration of 466.62 ± 153.69 items/L, and higher MP abundance was found downstream of spring rain and upstream of autumn rain. Among the different rainfall seasons, the variations in microplastics at various sampling sites were more stable in the plum rain season, with an average concentration of 473.67 ± 105.17 items/L, while the concentrations of TP and TN in the plum rain season were higher than those in other rain seasons. Transparent MPs had the highest abundance at many sampling sites in all seasons, and large-sized MPs (270–5000 μm) occurred more in the autumn rain season. PVC was more prevalent in autumn, but PET decreased in the plum rain season. Interestingly, more fibers, PET, and large-sized MPs were found in the autumn rain. The index of hazard scores of plastic polymers (H) revealed that the studied river was at a severe pollution level (IV), which was highly influenced by PVC and PC. In addition, the pollution load index (PLI) value in different rain seasons indicated slight pollution (I). At the same time, it was higher in autumn rains than in other seasons due to the higher variance in MPs. Therefore, the ecological risk of microplastics in the Qinhuai River should be seriously considered, along with seasonal variance and the PVC and PC polymers. Our research is expected to provide valuable assistance in improving the management of urban rivers.

Funder

Jiangsu Provincial Key Research and Development Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3