Abstract
Within a global Land Data Assimilation System (LDAS-Monde), satellite-derived Surface Soil Moisture (SSM) and Leaf Area Index (LAI) products are jointly assimilated with a focus on the Euro-Mediterranean region at 0.5∘ resolution between 2007 and 2015 to improve the monitoring quality of land surface variables. These products are assimilated in the CO2 responsive version of ISBA (Interactions between Soil, Biosphere and Atmosphere) land surface model, which is able to represent the vegetation processes including the functional relationship between stomatal aperture and photosynthesis, plant growth and mortality (ISBA-A-gs). This study shows the positive impact on SSM and LAI simulations through assimilating their satellite-derived counterparts into the model. Using independent flux estimates related to vegetation dynamics (evapotranspiration, Sun-Induced Fluorescence (SIF) and Gross Primary Productivity (GPP)), it is also shown that simulated water and CO2 fluxes are improved with the assimilation. These vegetation products tend to have higher root-mean-square deviations in summer when their values are also at their highest, representing 20–35% of their absolute values. Moreover, the connection between SIF and GPP is investigated, showing a linear relationship depending on the vegetation type with correlation coefficient values larger than 0.8, which is further improved by the assimilation.
Funder
Seventh Framework Programme
Subject
General Earth and Planetary Sciences
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献