Abstract
The reconstruction of fine-scale information from sparse data measured at irregular locations is often needed in many diverse applications, including numerous instances of practical fluid dynamics observed in natural environments. This need is driven by tasks such as data assimilation or the recovery of fine-scale knowledge including models from limited data. Sparse reconstruction is inherently badly represented when formulated as a linear estimation problem. Therefore, the most successful linear estimation approaches are better represented by recovering the full state on an encoded low-dimensional basis that effectively spans the data. Commonly used low-dimensional spaces include those characterized by orthogonal Fourier and data-driven proper orthogonal decomposition (POD) modes. This article deals with the use of linear estimation methods when one encounters a non-orthogonal basis. As a representative thought example, we focus on linear estimation using a basis from shallow extreme learning machine (ELM) autoencoder networks that are easy to learn but non-orthogonal and which certainly do not parsimoniously represent the data, thus requiring numerous sensors for effective reconstruction. In this paper, we present an efficient and robust framework for sparse data-driven sensor placement and the consequent recovery of the higher-resolution field of basis vectors. The performance improvements are illustrated through examples of fluid flows with varying complexity and benchmarked against well-known POD-based sparse recovery methods.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference73 articles.
1. Transition in Atmospheric Boundary Layer Turbulence Structure from Neutral to Moderately Convective Stability States and Implications to Large-scale Rolls;Jayaraman;arXiv,2018
2. Quad-Rotor Flight Simulation in Realistic Atmospheric Conditions
3. Wind estimation using quadcopter motion: A machine learning approach
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献