Longer-Term Forecasting of Excess Stock Returns—The Five-Year Case

Author:

Kyriakou IoannisORCID,Mousavi ParastooORCID,Nielsen Jens PerchORCID,Scholz MichaelORCID

Abstract

Long-term return expectations or predictions play an important role in planning purposes and guidance of long-term investors. Five-year stock returns are less volatile around their geometric mean than returns of higher frequency, such as one-year returns. One would, therefore, expect models using the latter to better reduce the noise and beat the simple historical mean than models based on the former. However, this paper shows that the general tendency is surprisingly the opposite: long-term forecasts over five years have a similar or even better predictive power when compared to the one-year case. We consider a long list of economic predictors and benchmarks relevant for the long-term investor. Our predictive approach consists of adopting and implementing a fully nonparametric smoother with the covariates and the smoothing parameters chosen by cross-validation. We consistently find that long-term forecasting performs well and recommend drawing more attention to it when designing investment strategies for long-term investors. Furthermore, our preferred predictive model did stand the test of Covid-19 providing a relatively optimistic outlook in March 2020 when uncertainty was all around us with lockdown and facing an unknown new pandemic.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference31 articles.

1. Long horizon predictability: An asset allocation perspective

2. End-of-the-year economic growth and time-varying expected returns

3. Reconciling the Return Predictability Evidence

4. Predictability of Equity Returns over Different Time Horizons: A Nonparametric Approach;Chen,2009

5. Nonparametric Predictive Regressions for Stock Return Predictions;Cheng,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3