An Advanced Learning-Based Multiple Model Control Supervisor for Pumping Stations in a Smart Water Distribution System

Author:

Predescu AlexandruORCID,Truică Ciprian-OctavianORCID,Apostol Elena-SimonaORCID,Mocanu MarianaORCID,Lupu CiprianORCID

Abstract

Water distribution is fundamental to modern society, and there are many associated challenges in the context of large metropolitan areas. A multi-domain approach is required for designing modern solutions for the existing infrastructure, including control and monitoring systems, data science and Machine Learning. Considering the large scale water distribution networks in metropolitan areas, machine and deep learning algorithms can provide improved adaptability for control applications. This paper presents a monitoring and control machine learning-based architecture for a smart water distribution system. Automated test scenarios and learning methods are proposed and designed to predict the network configuration for a modern implementation of a multiple model control supervisor with increased adaptability to changing operating conditions. The high-level processing and components for smart water distribution systems are supported by the smart meters, providing real-time data, push-based and decoupled software architectures and reactive programming.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference68 articles.

1. Sustainable drinking water supply in Pune metropolitan region: Alternative policies;Rode;Theor. Empir. Res. Urban Manag.,2009

2. Water for the City: Lessons from Tendencies and Critical Issues in Five Advanced Metropolitan Areas;KALLIS;Built Environ.,2002

3. Water Supply to the Two Largest Brazilian Metropolitan Regions

4. Impacts of Multiple Stresses on Water Demand and Supply Across the Southeastern United States1

5. Review of Water Distribution Systems Modelling and Performance Analysis Softwares

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3