Application of the Combined ANN and GA for Multi-Response Optimization of Cutting Parameters for the Turning of Glass Fiber-Reinforced Polymer Composites

Author:

Equbal Azhar,Shamim Mohammad,Badruddin Irfan AnjumORCID,Equbal Md. Israr,Sood Anoop KumarORCID,Nik Ghazali Nik NazriORCID,Khan Zahid A.

Abstract

Glass fiber-reinforced polymer (GFRP) composites find wide applications in automobile, aerospace, aircraft and marine industries due to their attractive properties such as lightness of weight, high strength-to-weight ratio, high stiffness, good dimensional stability and corrosion resistance. Although these materials are required in a wide range of applications, their non-homogeneous and anisotropic properties make their machining troublesome and consequently restrict their use. It is thus important to study not only the machinability of these materials but also to determine optimum cutting parameters to achieve optimum machining performance. The present work focuses on turning of the GFRP composites with an aim to determine the optimal cutting parameters that yield the optimum output responses. The effect of three cutting parameters, i.e., spindle rotational speed (N), feed rate (f) and depth of cut (d) in conjunction with their interactions on three output responses, viz., Material Removal Rate (MRR), Tool Wear Rate (TWR), and Surface roughness (Ra), is studied using full factorial design of experiments (FFDE). The statistical significance of the cutting parameters and their interactions is determined using analysis of variance (ANOVA). To relate the output response and cutting parameters, empirical models are also developed. Artificial Neural Network (ANN) combined with Genetic Algorithm (GA) is employed for multi-response optimization to simultaneously optimize the MRR, TWR and Ra.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3