Abstract
In regression analysis, oftentimes a linear (or linearized) Gauss-Markov Model (GMM) is used to describe the relationship between certain unknown parameters and measurements taken to learn about them. As soon as there are more than enough data collected to determine a unique solution for the parameters, an estimation technique needs to be applied such as ‘Least-Squares adjustment’, for instance, which turns out to be optimal under a wide range of criteria. In this context, the matrix connecting the parameters with the observations is considered fully known, and the parameter vector is considered fully unknown. This, however, is not always the reality. Therefore, two modifications of the GMM have been considered, in particular. First, ‘stochastic prior information’ (p. i.) was added on the parameters, thereby creating the – still linear – Random Effects Model (REM) where the optimal determination of the parameters (random effects) is based on ‘Least Squares collocation’, showing higher precision as long as the p. i. was adequate (Wallace test). Secondly, the coefficient matrix was allowed to contain observed elements, thus leading to the – now nonlinear – Errors-In-Variables (EIV) Model. If not using iterative linearization, the optimal estimates for the parameters would be obtained by ‘Total Least Squares adjustment’ and with generally lower, but perhaps more realistic precision. Here the two concepts are combined, thus leading to the (nonlinear) ’EIV-Model with p. i.’, where an optimal estimation (resp. prediction) technique is developed under the name of ‘Total Least-Squares collocation’. At this stage, however, the covariance matrix of the data matrix – in vector form – is still being assumed to show a Kronecker product structure.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Reference16 articles.
1. Estimation of Parameters in a Linear Model
2. Parameter Estimation and Hypothesis Testing in Linear Models;Koch,1999
3. A generalized least-squares model
4. Model Choice and Adjustment Techniques in the Presence of Prior Information;Schaffrin,1983
5. An Analysis of the Total Least Squares Problem
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献