Abstract
In this paper we deal with Abel equations of the form d y / d x = A 1 ( x ) y + A 2 ( x ) y 2 + A 3 ( x ) y 3 , where A 1 ( x ) , A 2 ( x ) and A 3 ( x ) are real polynomials and A 3 ≢ 0 . We prove that these Abel equations can have at most two rational (non-polynomial) limit cycles when A 1 ≢ 0 and three rational (non-polynomial) limit cycles when A 1 ≡ 0 . Moreover, we show that these upper bounds are sharp. We show that the general Abel equations can always be reduced to this one.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献