Process Development for Methyl Isobutyl Ketone Production Using the Low-Pressure One-Step Gas-Phase Selective Hydrogenation of Acetone

Author:

Al-Rabiah Abdulrahman A.ORCID,Alkathiri Raed R.,Bagabas Abdulaziz A.

Abstract

Methyl isobutyl ketone (MIBK) is a highly valuable product in the chemical industry. It is widely used as an extracting agent for heavy metals, antibiotics, and lubricating oils. Generally, MIBK can be produced by three-step and one-step liquid-phase methods. These methods are expensive and energy-demanding due to the high pressure and low conversion of acetone. A novel nano-Pd/nano-ZnCr2O4 catalyst was developed to produce MIBK with high conversion and selectivity of 77.3% and 72.1%, respectively, at 350 °C and ambient pressure, eliminating the need for high pressure in conventional MIBK processes. This study is the first that proposes a newly developed process of methyl isobutyl ketone (MIBK) production using the low-pressure one-step gas-phase selective hydrogenation of acetone. In this work, a novel process flow diagram has been developed for the production of MIBK using the developed nano-catalyst. The process was heat integrated, resulting in a 26% and a 19.5% reduction in the heating and cooling utilities, respectively, leading to a 12.6% reduction in the total energy demand. An economic analysis was performed to determine the economic feasibility of the developed process, which shows that the process is highly profitable, in which it reduced both the capital and operating costs of MIBK synthesis and showed a return on investment (ROI) of 29.6% with a payback period of 2.2 years. It was found that the ROI could be increased by 18% when the reactor temperature is increased to 350 °C. In addition, the economic sensitivity analysis showed that the process is highly sensitive to product prices and least sensitive to utility prices, which is due to the versatility of the process that requires only a low amount of energy.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3