In Silico CFD Investigation of the Granulation Hydrodynamics in Rotating Drum: Process Sensitivity to the Operating Parameters and Drag Models

Author:

Elmisaoui SafaeORCID,Benjelloun SaadORCID,Boukharfane RadouanORCID,Khamar LhachmiORCID,Elmisaoui SanaeORCID,Khamar Mohamed

Abstract

Computational fluid dynamics (CFD) have been extensively used to simulate the hydrodynamics of multiphase flows (MPFs) in rotating machinery. In the presence of a granular dense phase, the Kinetic Theory of Granular Flow (KTGF) is usually coupled to Eulerian multi-fluid models to obtain tractable computational fluid models. In the present work, the hydrodynamic behavior of a three dimensional, industrial scale, and rotating drum granulator with gas–solid flows is assessed using the Eulerian–Eulerian approach coupled with the k-ε standard turbulence model. A Eulerian–Eulerian Two-Fluid Model (TFM) is used with the KTGF model for the granular phase. The sensitivities to different operating parameters, including the rotational speed (8, 16, and 24 rpm), inclination degree (3.57∘, 5.57∘, and 7.57∘), and degree of filling (20%, 30%, and 40%) are studied. Moreover, the impact of the drag model on the simulation accuracy is investigated. The flow behavior, regime transitions, and particle distribution are numerically evaluated, while varying the operating conditions and the drag models. The rotational speed and filling degree appear to have greater influences on the granulation effectiveness than on the inclination degree. Three drag models are retained in our analysis. Both the Gidaspow and Wen and Yu models successfully predict the two-phase flow in comparison to the Syamlal and O’Brien model, which seems to underestimate the hydrodynamics of the flow in both its axial and radial distributions (a fill level less than 35%). The methodology followed in the current work lays the first stone for the optimization of the phosphates fertilizer wet-granulation process within an industrial installation.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference50 articles.

1. Fertilizers, 4. Granulation;Dittmar,2000

2. Hydrodynamics of Gas Flow in Small-Sized Vortex Granulators in the Production of Nitrogen Fertilizers

3. Mise en œuvre des Poudres: Techniques de Granulation Humide et Liants. Techniques de l’ingénieur. Génie des Procédés, J2253 https://www.techniques-ingenieur.fr/base-documentaire/biomedical-pharma-th15/mise-en-forme-des-medicaments-et-autres-produits-de-sante-42611210/mise-en-uvre-des-poudres-j2254/

4. Industry 4.0 in Action: Digitalisation of a Continuous Process Manufacturing for Formulated Products

5. Struvite recovery from swine wastewater using fluidized-bed homogeneous granulation process

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3