Synthesis, Characterization and Gas Adsorption of Unfunctionalized and TEPA-Functionalized MSU-2

Author:

Lee Xin Ying,Viriya Vinosha,Chew Thiam LengORCID,Oh Pei Ching,Ong Yit Thai,Ho Chii-DongORCID,Jawad Zeinab AbbasORCID

Abstract

Michigan State University-2 (MSU-2) is notable potential adsorbent for carbon dioxide (CO2) due to its intrinsic properties, which include its highly interconnected three-dimensional (3D) wormhole-like framework structure, high specific surface area, and its large total pore volume, as well as its large amount of surface silanol hydroxyl groups, which facilitate the amine functionalization process. In this study, unfunctionalized MSU-2 was synthesized via a fluoride-assisted two-step process via the solution precipitation method, using Triton X-100 as the surfactant and tetraethylorthosilicate (TEOS) as the silica precursor. Then, the synthesized MSU-2 was functionalized using varying tetraethylenepentamine (TEPA) loadings of 20–60 wt%. The effect of different TEPA loadings on the properties and CO2 adsorption capacity of the MSU samples was investigated. Studies of the CO2 adsorption of the unfunctionalized and TEPA-functionalized MSU-2 samples was conducted at 40 °C and 1 bar of pressure. Furthermore, scanning electron microscopy (SEM); surface area and porosity (SAP) analysis; carbon, hydrogen, nitrogen, and sulfur (CHNS) analysis, X-ray diffractometry (XRD); Fourier transform infrared (FTIR) spectrometry; and thermogravimetric analysis (TGA) were utilized to characterize the resultant unfunctionalized and TEPA-functionalized MSU-2 with different TEPA loadings in order to study their morphologies, pore characteristics, elemental compositions, crystallographic structures, functional groups, chemical bonding, and thermal stability, respectively. The comprehensive results obtained from the analytical instruments and the CO2 adsorption studies indicated that the TEPA-functionalized MSU-2 with 40 wt% of TEPA loading achieved the highest average CO2 adsorption capacity of 3.38 mmol-CO2/g-adsorbent.

Funder

YUTP-Fundamental Research Grant

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference53 articles.

1. Carbon dioxide adsorption on zeolites and activated carbon by pressure swing adsorption in a fixed bed

2. Global Energy & CO2 Status Report 2019 https://www.iea.org/reports/global-energy-co2-status-report-2019

3. Health effects of increase in concentration of carbon dioxide in the atmosphere;Robertson;Curr. Sci.,2006

4. Sea surface height evidence for long-term warming effects of tropical cyclones on the ocean

5. Carbon Dioxide Separation from Flue Gases: A Technological Review Emphasizing Reduction in Greenhouse Gas Emissions

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3