Author:
Luo Dongyuan,Liang Yuan,Wu Hao,Li Shudi,He Yaoye,Du Junyan,Chen Xixi,Pu Shengyan
Abstract
The contaminated site is considered a high-risk pollution source due to the accumulation of industrial waste and wastewater, which affects the soil and groundwater environment. In this study, through soil and groundwater investigation, we outlined the characteristics of heavy metal contamination in the soil and groundwater of the contaminated site, assessed the health risk of the contaminated site to humans, and established a numerical model to predict the ecological and environmental risks of the site. The results of the study showed that the maximum contamination concentration of pollutants (lead, arsenic, cadmium) in the soil all exceeded the Chinese environmental standard (GB36600-2018, Grade II), that the maximum contamination concentration (cadmium, Cd) of the groundwater exceeded the Chinese environmental standard (GB14848–2017, Grade IV), and that the heavy metal pollution was mainly concentrated in the production area of the site and the waste-residue stockpiles. The total carcinogenic risk and non-carcinogenic hazard quotient of the site’s soil heavy metal contaminants exceed the human acceptable limit, and there is a human health risk. However, the groundwater in the area where the site is located is prohibited from exploitation, and there is no volatility of the contaminants and no exposure pathway to the groundwater, so there is no risk to human health. The simulation prediction results show that, with the passage of time, the site groundwater pollutants as a whole migrate from south to north, affecting the northern surface water bodies after about 12 years, and there is a high ecological and environmental risk. The above findings provide a scientific basis for the study of the soil and groundwater at the riverside contaminated site.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献