New Model for Non-Spherical Particles Drag Coefficients in Non-Newtonian Fluid

Author:

Liu Jiankun,Hou Zhaokai,Xu Guoqing,Yan Lipeng

Abstract

The settlement drag coefficient of non-spherical particles (SDCNPs) is a crucial parameter in the field of petroleum engineering. Accurately predicting the SDCNPs in the fluid is essential to the selection and design of proppant and hydraulic design in the fracturing scheme. Although many models for anticipating the SDCNPs have been proposed, none of them can be adopted for non-Newtonian fluid (NNF) and Newtonian fluid (NF). In the investigation, the SDCNPs in NF and NNF are studied experimentally, and the anticipation mode of the settlement drag coefficient of spherical particles (SDCSPs) in different fluids (including Newton, Herschel-Bulkley and power law) is proposed. On this basis, the shape depiction parameter circularity is introduced to develop the SDCNPs. The results exhibit that the predicted values of the SDCNPs model perfectly align with the experimental values, and the average relative errors are 5.70%, 6.24% and 6.72%, respectively. The mode can accurately describe the settlement behavior of non-spherical particles (NSPs) and provide a basis for the application of NSPs in petroleum engineering.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3