Abstract
Particle size distribution is an important parameter of metallurgical coke for use in blast furnaces. It is usually analyzed by traditional sieving methods, which cause delays and require maintenance. In this paper, a coke particle detection model was developed using a deep learning-based object detection algorithm (YOLOv3). The results were used to estimate the particle size distribution by a statistical method. Images of coke on the main conveyor belt of a blast furnace were acquired for model training and testing, and the particle size distribution determined by sieving was used for verification of the results. The experiment results show that the particle detection model is fast and has a high accuracy; the absolute error of the particle size distribution between the detection method and the sieving method was less than 5%. The detection method provides a new approach for fast analysis of particle size distributions from images and holds promise for a future online application in the plant.
Funder
China Scholarship Council
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献