Application of the Analogy between Momentum and Heat Flux in Turbulent Flow of a Straight Tube to a Spiral Tube

Author:

Lee Kye-Bock,Song Eui-Hyeok,Lee Ji-Su,Rhi Seok-HoORCID

Abstract

A theory-based prediction method was used to estimate the friction factor and heat transfer rate in the turbulent flow of a helically coiled tube. The secondary flow produced by a centrifugal force improves heat and mass transfer; therefore, spiral coil pipes are widely used in a variety of industrial applications. The law of the wall and the Reynolds analogy, which states that momentum transfer in a turbulent flow is equivalent to heat transfer, were used in this theoretical method. The logarithmic law was used to characterize the velocity profile in the turbulence-dominated region, and the local wall shear stress variation throughout the circumference of the helical tube wall was considered. The friction factor and heat transfer in the turbulent flow of the helically coiled tube were accurately predicted by the model. Using the Reynolds analogy, the local Nusselt number in the circumferential direction of the helical tube wall was determined. The effect of decreasing local heat transfer within the tube while increasing heat transfer outside the tube was quantified. The analogy between the momentum flux and the heat flux in the turbulent flow of the straight tube was also proven to be applicable to the spiral tube.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3