Virtual Voltage Vector-Based Model Predictive Current Control for Five-Phase Induction Motor

Author:

Zhang Qingfei,Zhao Jinghong,Yan Sinian,Xiong Yiyong,Ma Yuanzheng,Chen Hansi

Abstract

The high-performance control technology of multi-phase motors is a key technology for the application of multi-phase motors in many fields, such as electric transportation. The model predictive current control (MPCC) strategy has been extended to multi-phase systems due to its high dynamic performance. Model-predictive current control faces the problem that it cannot effectively regulate harmonic plane currents, and thus cannot obtain high-quality current waveforms because only one switching state is applied in a sampling period. To solve this problem, this paper uses the virtual vector-based MPCC to select the optimal virtual vector and apply it under the premise that the average value of the harmonic plane voltage in a single switching cycle is zero. Taking a five-phase induction motor as an example, the steady-state and dynamic performance of the proposed virtual vector MPCC and the traditional model predictive current control were simulated, respectively. Simulation results demonstrated the effectiveness of the proposed method in improving waveform quality while maintaining excellent dynamic performance.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3