Pore Size Distribution Characterization by Joint Interpretation of MICP and NMR: A Case Study of Chang 7 Tight Sandstone in the Ordos Basin

Author:

Li Chaozheng,Liu Xiangbai,You Fuliang,Wang Peng,Feng Xinluo,Hu ZhazhaORCID

Abstract

Pore size distribution characterization of unconventional tight reservoirs is extremely significant for an optimized extraction of petroleum from such reservoirs. In the present study, mercury injection capillary pressure (MICP) and low-field nuclear magnetic resonance (NMR) are integrated to evaluate the pore size distribution of the Chang 7 tight sandstone reservoir. The results show that the Chang 7 tight sandstones are characterized by high clay mineral content and fine grain size. They feature complex micro-nano-pore network system, mainly composed of regular primary intergranular pores, dissolved pores, inter-crystalline pores, and micro-fractures. Compared to the porosity obtained from MICP, the NMR porosity is closer to the gas-measured porosity (core analysis), and thus can more accurately describe the total pore space of the tight sandstone reservoirs. The pore throat distribution (PTD) from MICP presents a centralized distribution with high amplitude, while the pore size distribution (PSD) derived from NMR shows a unimodal distribution or bimodal distribution with low amplitude. It is notable that the difference between the PSD and the PTD is always related to the pore network composed of large pores connecting with narrow throats. The PSD always coincides very well with the PTD in the very tight non-reservoirs with a much lower porosity and permeability, probably due to the pore geometry that is dominated by the cylindrical pores. However, a significant inconsistency between the PSD and PTD in tight reservoirs of relatively high porosity and low permeability is usually associated with the pore network that is dominated by the sphere-cylindrical pores. Additionally, Euclidean distance between PSD and PTD shows a good positive correlation with pore throat ratio (PTR), further indicating that the greater difference of pore bodies and pore throats, the more obvious differentiation of two distributions. In summary, the MICP and NMR techniques imply the different profiles of pore structure, which has an important implication for deep insight into pore structure and accurate evaluation of petrophysical properties in the tight sandstone reservoir.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3