Osteogenic Potential of Nano-Hydroxyapatite and Strontium-Substituted Nano-Hydroxyapatite

Author:

Kontogianni Georgia-Ioanna1,Coelho Catarina2ORCID,Gauthier Rémy34ORCID,Fiorilli Sonia3,Quadros Paulo2ORCID,Vitale-Brovarone Chiara3,Chatzinikolaidou Maria15ORCID

Affiliation:

1. Department of Materials Science and Technology, University of Crete, 70013 Heraklion, Greece

2. FLUIDINOVA S.A., 4475-188 Maia, Portugal

3. Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy

4. CNRS, INSA Lyon, Université Claude Bernard Lyon 1, UMR 5510, MATEIS, F-69621 Villeur-banne, France

5. Foundation for Research and Technology Hellas (FORTH), Institute for Electronic Structure and Laser (IESL), 70013 Heraklion, Greece

Abstract

Nanohydroxyapatite (nanoHA) is the major mineral component of bone. It is highly biocompatible, osteoconductive, and forms strong bonds with native bone, making it an excellent material for bone regeneration. However, enhanced mechanical properties and biological activity for nanoHA can be achieved through enrichment with strontium ions. Here, nanoHA and nanoHA with a substitution degree of 50 and 100% of calcium with strontium ions (Sr-nanoHA_50 and Sr-nanoHA_100, respectively) were produced via wet chemical precipitation using calcium, strontium, and phosphorous salts as starting materials. The materials were evaluated for their cytotoxicity and osteogenic potential in direct contact with MC3T3-E1 pre-osteoblastic cells. All three nanoHA-based materials were cytocompatible, featured needle-shaped nanocrystals, and had enhanced osteogenic activity in vitro. The Sr-nanoHA_100 indicated a significant increase in the alkaline phosphatase activity at day 14 compared to the control. All three compositions revealed significantly higher calcium and collagen production up to 21 days in culture compared to the control. Gene expression analysis exhibited, for all three nanoHA compositions, a significant upregulation of osteonectin and osteocalcin on day 14 and of osteopontin on day 7 compared to the control. The highest osteocalcin levels were found for both Sr-substituted compounds on day 14. These results demonstrate the great osteoinductive potential of the produced compounds, which can be exploited to treat bone disease.

Funder

European Union

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3