On the Origin of Raman Activity in Anatase TiO2 (Nano)Materials: An Ab Initio Investigation of Surface and Size Effects

Author:

Taudul Beata1,Tielens Frederik2ORCID,Calatayud Monica1ORCID

Affiliation:

1. Laboratoire de Chimie Théorique, LCT, Sorbonne Université, CNRS, 4 Place Jussieu, F-75005 Paris, France

2. General Chemistry (ALGC)—Materials Modelling Group, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium

Abstract

Titania-based materials are abundant in technological applications, as well as everyday products; however, many of its structure–property relationships are still unclear. In particular, its surface reactivity on the nanoscale has important consequences for fields such as nanotoxicity or (photo)catalysis. Raman spectroscopy has been used to characterize titania-based (nano)material surfaces, mainly based on empirical peak assignments. In the present work, we address the structural features responsible for the Raman spectra of pure, stoichiometric TiO2 materials from a theoretical characterization. We determine a computational protocol to obtain accurate Raman response in a series of anatase TiO2 models, namely, the bulk and three low-index terminations by periodic ab initio approaches. The origin of the Raman peaks is thoroughly analyzed and the structure–Raman mapping is performed to account for structural distortions, laser and temperature effects, surface orientation, and size. We address the appropriateness of previous experimental use of Raman to quantify the presence of distinct TiO2 terminations, and provide guidelines to exploit the Raman spectrum based on accurate rooted calculations that could be used to characterize a variety of titania systems (e.g., single crystals, commercial catalysts, thin layered materials, facetted nanoparticles, etc.).

Funder

EU H2020 Project, “Characterisation and Harmonisation for Industrial Standardisation of Advanced Materials”

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3