Designing 3D Ternary Hybrid Composites Composed of Graphene, Biochar and Manganese Dioxide as High-Performance Supercapacitor Electrodes

Author:

Babaahmadi Vahid1,Pourhosseini S. E. M.2,Norouzi Omid3,Naderi Hamid Reza2ORCID

Affiliation:

1. Materials and Textile Engineering Department, Faculty of Engineering, Razi University, Kermanshah 6714414971, Iran

2. Faculty of Chemistry, University of Tehran, Tehran 1417935840, Iran

3. Mechanical Engineering Program, School of Engineering, University of Guelph, Guelph, ON 1G 2W1, Canada

Abstract

Biochar derived from waste biomass has proven to be an encouraging novel electrode material in supercapacitors. In this work, luffa sponge-derived activated carbon with a special structure is produced through carbonization and KOH activation. The reduced graphene oxide (rGO) and manganese dioxide (MnO2) are in-situ synthesized on luffa-activated carbon (LAC) to improve the supercapacitive behavior. The structure and morphology of LAC, LAC-rGO and LAC-rGO-MnO2 are characterized by the employment of X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), BET analysis, Raman spectroscopy and scanning electron microscopy (SEM). The electrochemical performance of electrodes is performed in two and three-electrode systems. In the asymmetrical two-electrode system, the LAC-rGO-MnO2//Co3O4-rGO device shows high specific capacitance (SC), high-rate capability and excellent cycle reversibly in a wide potential window of 0–1.8 V. The maximum specific capacitance (SC) of the asymmetric device is 586 F g−1 at a scan rate of 2 mV s−1. More importantly, the LAC-rGO-MnO2//Co3O4-rGO device exhibits a specific energy of 31.4 W h kg−1 at a specific power of 400 W kg−1. Overall, the synergistic effect between the ternary structures of microporous LAC, rGO sheets and MnO2 nanoparticles leads to the introduction of high-performance hierarchical supercapacitor electrodes.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3