The 3D Controllable Fabrication of Nanomaterials with FIB-SEM Synchronization Technology

Author:

Zhao Lirong1ORCID,Cui Yimin1ORCID,Li Junyi1,Xie Yuxi1,Li Wenping1,Zhang Junying1ORCID

Affiliation:

1. School of Physics, Beihang University, Beijing 100191, China

Abstract

Nanomaterials with unique structures and functions have been widely used in the fields of microelectronics, biology, medicine, and aerospace, etc. With advantages of high resolution and multi functions (e.g., milling, deposition, and implantation), focused ion beam (FIB) technology has been widely developed due to urgent demands for the 3D fabrication of nanomaterials in recent years. In this paper, FIB technology is illustrated in detail, including ion optical systems, operating modes, and combining equipment with other systems. Together with the in situ and real-time monitoring of scanning electron microscopy (SEM) imaging, a FIB-SEM synchronization system achieved 3D controllable fabrication from conductive to semiconductive and insulative nanomaterials. The controllable FIB-SEM processing of conductive nanomaterials with a high precision is studied, especially for the FIB-induced deposition (FIBID) 3D nano-patterning and nano-origami. As for semiconductive nanomaterials, the realization of high resolution and controllability is focused on nano-origami and 3D milling with a high aspect ratio. The parameters of FIB-SEM and its working modes are analyzed and optimized to achieve the high aspect ratio fabrication and 3D reconstruction of insulative nanomaterials. Furthermore, the current challenges and future outlooks are prospected for the 3D controllable processing of flexible insulative materials with high resolution.

Funder

National Natural Science Foundation of China-Yunan Joint Fund

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nanofabrication by Focused Ion Beam;Nanofabrication;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3