Affiliation:
1. Computational Modeling & Simulation Program, University of Pittsburgh, Pittsburgh, PA 15260, USA
2. Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
3. Center for Research Computing and Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
Abstract
Having access to accurate electron densities in chemical systems, especially for dynamical systems involving chemical reactions, ion transport, and other charge transfer processes, is crucial for numerous applications in materials chemistry. Traditional methods for computationally predicting electron density data for such systems include quantum mechanical (QM) techniques, such as density functional theory. However, poor scaling of these QM methods restricts their use to relatively small system sizes and short dynamic time scales. To overcome this limitation, we have developed a deep neural network machine learning formalism, which we call deep charge density prediction (DeepCDP), for predicting charge densities by only using atomic positions for molecules and condensed phase (periodic) systems. Our method uses the weighted smooth overlap of atomic positions to fingerprint environments on a grid-point basis and map it to electron density data generated from QM simulations. We trained models for bulk systems of copper, LiF, and silicon; for a molecular system, water; and for two-dimensional charged and uncharged systems, hydroxyl-functionalized graphane, with and without an added proton. We showed that DeepCDP achieves prediction R2 values greater than 0.99 and mean squared error values on the order of 10−5e2 Å−6 for most systems. DeepCDP scales linearly with system size, is highly parallelizable, and is capable of accurately predicting the excess charge in protonated hydroxyl-functionalized graphane. We demonstrate how DeepCDP can be used to accurately track the location of charges (protons) by computing electron densities at a few selected grid points in the materials, thus significantly reducing the computational cost. We also show that our models can be transferable, allowing prediction of electron densities for systems on which it has not been trained but that contain a subset of atomic species on which it has been trained. Our approach can be used to develop models that span different chemical systems and train them for the study of large-scale charge transport and chemical reactions.
Funder
National Science Foundation
NSF award
Subject
General Materials Science,General Chemical Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献