Fabrication and Microwave Absorption Properties of Core-Shell Structure Nanocomposite Based on Modified Anthracite Coal

Author:

Zhang Xiaomei12,Zhou Baitong3,Li Xiang12,Chen Runhua1,Ma Chen3ORCID,Chen Wenhua3,Chen Guohua3ORCID

Affiliation:

1. Luoyang Ship Material Research Institute, Luoyang 471003, China

2. Science and Technology on Marine Corrosion and Protection Laboratory, Luoyang 471003, China

3. College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China

Abstract

Microwave-absorbing materials have attracted extensive attention due to the development of electronic countermeasures. In this study, novel nanocomposites with core–shell structures based on the core of Fe-Co nanocrystals and the shell of furan methylamine (FMA)-modified anthracite coal (Coal-F) were designed and fabricated. The Diels-Alder (D-A) reaction of Coal-F with FMA creates a large amount of aromatic lamellar structure. After the high-temperature treatment, the modified anthracite with a high degree of graphitization showed an excellent dielectric loss, and the addition of Fe and Co effectively enhanced the magnetic loss of the obtained nanocomposites. In addition, the obtained micro-morphologies proved the core–shell structure, which plays a significant role in strengthening the interface polarization. As a result, the combined effect of the multiple loss mechanism promoted a remarkable improvement in the absorption of incident electromagnetic waves. The carbonization temperatures were specifically studied through a setting control experiment, and 1200 °C was proved to be the optimum parameter to obtain the best dielectric loss and magnetic loss of the sample. The detecting results show that the 10 wt.% CFC-1200/paraffin wax sample with a thickness of 5 mm achieves a minimum reflection loss of −41.6 dB at a frequency of 6.25 GHz, indicating an excellent microwave absorption performance.

Funder

Graphene Powder & Composite Research Center of Fujian Province

Xiamen Key Laboratory of Polymers & Electronic Materials

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3