Abstract
Understanding the soil moisture behavior in relation to land use in tropical Andean mountain catchments is essential for comprehending water fluxes, ecohydrological relations and hydrological dynamics in this understudied ecosystem. Soils are a key factor of these ecosystems, especially in reference to water level regulation and anthropogenic activities that can alter the interactions, and generate physical, chemical and biological imbalances. In this study, we investigated the relationship between precipitation, soil water content (SWC) and the flow at different pedon scales, and hillslope and microcatchment scales subjected to different land uses. The results showed the relation between the soils uses, topographical conditions and soil moisture at the microcatchment scale. At the pedon scale, soil moisture is higher and with a low variability in depth; high soil moisture content throughout the study period was registered in forest > pasture > coffee agroforestry systems. The topographic wetness index (TWI), despite its adjusted interpretation of the behavior of humidity at the microcatchment scale, is a poor predictor of the behavior of soil humidity at the pedon scale. Pedon water content has a close relation with the precipitation behavior, especially in prolonged dry and humid periods. The soils studied tend to present udic moisture regimes with a dry period of approximately 67 accumulative days per year. The mean flow behavior responds to precipitation and soil moisture behavior at a monthly scale. Understanding the consequences of the land cover changes in relation to soil water behavior, as well as how soil water interacts with the different components of the hydric balance at different scales, allows an understanding of the complex interactions in natural microcatchments under different land use systems.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献