Performability Evaluation of Load Balancing and Fail-over Strategies for Medical Information Systems with Edge/Fog Computing Using Stochastic Reward Nets

Author:

Nguyen Tuan AnhORCID,Fe Iure,Brito Carlos,Kaliappan Vishnu Kumar,Choi Eunmi,Min Dugki,Lee Jae WooORCID,Silva Francisco AirtonORCID

Abstract

The aggressive waves of ongoing world-wide virus pandemics urge us to conduct further studies on the performability of local computing infrastructures at hospitals/medical centers to provide a high level of assurance and trustworthiness of medical services and treatment to patients, and to help diminish the burden and chaos of medical management and operations. Previous studies contributed tremendous progress on the dependability quantification of existing computing paradigms (e.g., cloud, grid computing) at remote data centers, while a few works investigated the performance of provided medical services under the constraints of operational availability of devices and systems at local medical centers. Therefore, it is critical to rapidly develop appropriate models to quantify the operational metrics of medical services provided and sustained by medical information systems (MIS) even before practical implementation. In this paper, we propose a comprehensive performability SRN model of an edge/fog based MIS for the performability quantification of medical data transaction and services in local hospitals or medical centers. The model elaborates different failure modes of fog nodes and their VMs under the implementation of fail-over mechanisms. Sophisticated behaviors and dependencies between the performance and availability of data transactions are elaborated in a comprehensive manner when adopting three main load-balancing techniques including: (i) probability-based, (ii) random-based and (iii) shortest queue-based approaches for medical data distribution from edge to fog layers along with/without fail-over mechanisms in the cases of component failures at two levels of fog nodes and fog virtual machines (VMs). Different performability metrics of interest are analyzed including (i) recover token rate, (ii) mean response time, (iii) drop probability, (iv) throughput, (v) queue utilization of network devices and fog nodes to assimilate the impact of load-balancing techniques and fail-over mechanisms. Discrete-event simulation results highlight the effectiveness of the combination of these for enhancing the performability of medical services provided by an MIS. Particularly, performability metrics of medical service continuity and quality are improved with fail-over mechanisms in the MIS while load balancing techniques help to enhance system performance metrics. The implementation of both load balancing techniques along with fail-over mechanisms provide better performability metrics compared to the separate cases. The harmony of the integrated strategies eventually provides the trustworthiness of medical services at a high level of performability. This study can help improve the design of MIS systems integrated with different load-balancing techniques and fail-over mechanisms to maintain continuous performance under the availability constraints of medical services with heavy computing workloads in local hospitals/medical centers, to combat with new waves of virus pandemics.

Funder

Brazilian National Council for Scientific and Technological Development - CNPq

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3