Enhanced Thermochromic Performance of VO2 Nanoparticles by Quenching Process

Author:

Wu Senwei1ORCID,Zhou Longxiao1,Li Bin1,Tian Shouqin1ORCID,Zhao Xiujian1

Affiliation:

1. State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology (WUT), No. 122, Luoshi Road, Wuhan 430070, China

Abstract

Vanadium dioxide (VO2) has been a promising energy-saving material due to its reversible metal-insulator transition (MIT) performance. However, the application of VO2 films has been seriously restricted due to the intrinsic low solar-energy modulation ability (ΔTsol) and low luminous transmittance (Tlum) of VO2. In order to solve the problems, the surface structure of VO2 particles was regulated by the quenching process and the VO2 dispersed films were fabricated by spin coating. Characterizations showed that the VO2 particles quenched in deionized water or ethanolreserved VO2(M) phase structure and they were accompanied by surface lattice distortion compared to the pristine VO2. Such distortion structure contributed to less aggregation and highly individual dispersion of the quenched particles in nanocomposite films. The corresponding film of VO2 quenched in water exhibited much higher ΔTsol with an increment of 42.5% from 8.8% of the original VO2 film, because of the significant localized surface plasmon resonance (LSPR) effect. The film fabricated from the VO2 quenched in ethanol presented enhanced thermochromic properties with 15.2% of ΔTsol and 62.5% of Tlum. It was found that the excellent Tlum resulted from the highly uniform dispersion state of the quenched VO2 nanoparticles. In summary, the study provided a facile way to fabricate well-dispersed VO2 nanocomposite films and to facilitate the industrialization development of VO2 thermochromic films in the smart window field.

Funder

National Natural Science Foundation of China

111 project

National Key R&D Program of China

Key R&D Project of Hubei Province

National innovation and entrepreneurship training program

Open Foundation of the State Key Laboratory of Silicate Materials for Architectures at WUT

State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3