Electric Field-Induced Nano-Assembly Formation: First Evidence of Silicon Superclusters with a Giant Permanent Dipole Moment

Author:

Jardali Fatme1ORCID,Tran Jacqueline1,Liège Frédéric12,Florea Ileana13ORCID,Leulmi Mohamed E.4,Vach Holger15ORCID

Affiliation:

1. Laboratoire de Physique des Interfaces et des Couches Minces, CNRS, École Polytechnique, IP Paris, 91128 Palaiseau, France

2. LMF, École Normale Supérieure, Paris-Saclay, 91190 Gif-sur-Yvette, France

3. CRHEA, CNRS, Université Côte d’Azur, 06903 Sophia-Antipolis, France

4. Center for SiNC Applications, 75000 Paris, France

5. Centre for Research in Molecular Modeling, Concordia University, Montreal, QC H4B 1R6, Canada

Abstract

The outstanding properties of silicon nanoparticles have been extensively investigated during the last few decades. Experimental evidence and applications of their theoretically predicted permanent electric dipole moment, however, have only been reported for silicon nanoclusters (SiNCs) for a size of about one to two nanometers. Here, we have explored the question of whether suitable plasma conditions could lead to much larger silicon clusters with significantly stronger permanent electric dipole moments. A pulsed plasma approach was used for SiNC production and surface deposition. The absorption spectra of the deposited SiNCs were recorded using enhanced darkfield hyperspectral microscopy and compared to time-dependent DFT calculations. Atomic force microscopy and transmission electron microscopy observations completed our study, showing that one-to-two-nanometer SiNCs can, indeed, be used to assemble much larger ”superclusters” with a size of tens of nanometers. These superclusters possess extremely high permanent electric dipole moments that can be exploited to orient and guide these clusters with external electric fields, opening the path to the controlled architecture of silicon nanostructures.

Funder

CNRS and Ecole Polytechnique

CNRS

HPC centers of IDRIS

CERMM

Hariri Foundation for Sustainable Human Development

ANR

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3