Structures, Electronic, and Magnetic Properties of CoKn (n = 2–12) Clusters: A Particle Swarm Optimization Prediction Jointed with First-Principles Investigation

Author:

Jiang Yi12,Aireti Maidina12,Leng Xudong12,Ji Xu12,Liu Jing12,Cui Xiuhua12,Duan Haiming12,Jing Qun12,Cao Haibin3

Affiliation:

1. Xinjiang Key Laboratory of Solid State Physics and Devices, Xinjiang University, 777 Huarui Road, Urumqi 830017, China

2. School of Physical Science and Technology, Xinjiang University, 777 Huarui Road, Urumqi 830017, China

3. Department of Physics, College of Sciences, Shihezi University, Shihezi 832000, China

Abstract

Transition-metal-doped clusters have long been attracting great attention due to their unique geometries and interesting physical and/or chemical properties. In this paper, the geometries of the lowest- and lower-energy CoKn (n = 2–12) clusters have been screened out using particle swarm optimization and first principles relaxation. The results show that except for CoK2 the other CoKn (n = 3–12) clusters are all three-dimensional structures, and CoK7 is the transition structure from which the lowest energy structures are cobalt atom-centered cage-like structures. The stability, the electronic structures, and the magnetic properties of CoKn clusters (n = 2–12) clusters are further investigated using the first principles method. The results show that the medium-sized clusters whose geometries are cage-like structures are more stable than smaller-sized clusters. The electronic configuration of CoKn clusters could be described as 1S1P1D according to the spherical jellium model. The main components of petal-shaped D molecular orbitals are Co-d and K-s states or Co-d and Co-s states, and the main components of sphere-like S molecular orbitals or spindle-like P molecular orbitals are K-s states or Co-s states. Co atoms give the main contribution to the total magnetic moments, and K atoms can either enhance or attenuate the total magnetic moments. CoKn (n = 5–8) clusters have relatively large magnetic moments, which has a relation to the strong Co-K bond and the large amount of charge transfer. CoK4 could be a magnetic superatom with a large magnetic moment of 5 μB.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3